Η αναζήτηση βρήκε 606 εγγραφές

από maiksoul
Πέμ Απρ 23, 2020 11:58 pm
Δ. Συζήτηση: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΑ - ΣΥΝΕΧΕΙΑ
Θέμα: Άσκηση με Bolzano
Απαντήσεις: 5
Προβολές: 984

Re: Άσκηση με Bolzano

Δίνεται η συνεχής και γνησίως φθίνουσα συνάρτηση $f:[2,8]\rightarrow \mathbb{R}$ με: $f(x)\neq 0$ για κάθε $xε[2,8]$ και $f(2)f(4)f(8)=64$. Να αποδείξετε ότι: α) $f(x)>0$, β) υπάρχει μοναδικό $x1ε(2,8)$ με $f(x1)=4$, γ) υπάρχει μοναδικό $x2ε[2,8]$ με $f(x2)=x2$. Συγχωρήστε με για το γράψιμο αλλά το...
από maiksoul
Δευ Σεπ 10, 2018 7:02 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Θαλή/Ευκλείδη (Seniors)
Θέμα: Συναρτησιακή
Απαντήσεις: 3
Προβολές: 1105

Re: Συναρτησιακή

Καλό απόγευμα , μια προσέγγιση: Να προσδιορίσετε όλες τις συναρτήσεις $f:\mathbb{R}\to\mathbb{R}$ για τις οποίες ισχύει $f(x)f(x+y)\leq f(x^2)+xy,(1)$ για κάθε $x,y\in \mathbb{R}.$ Για $ y=x^{2}-x $ προκύπτει από την αρχική για κάθε $x\in\mathbb{R}$: $ f(x)f(x^{2})\leq f(x^{2})+x^{3}-x^{2}... (2)$ Μ...
από maiksoul
Παρ Αύγ 24, 2018 4:21 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Θαλή/Ευκλείδη (Seniors)
Θέμα: Εκθετικό-ρητή ανίσωση
Απαντήσεις: 2
Προβολές: 584

Re: Εκθετικό-ρητή ανίσωση

Να λύσετε την ανίσωση $\displaystyle \dfrac{4^{-\left | x-2 \right |}}{\sqrt{x^2-x-2} +2} \leq \dfrac{2^{1-\left | x \right |}}{\sqrt{x^2+6x} +4}$ Η ανίσωση ορίζεται όταν $x\in(-\infty ,-6]\cup [2,+\infty ] $ και τότε γράφεται: $2^{\left | x \right |-2\cdot \left | x-2 \right |-1}\leq \frac{\sqrt{x...
από maiksoul
Δευ Νοέμ 20, 2017 11:24 am
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Επαρχιακός Διαγωνισμός Μαθηματικών Γ' Λυκείου 2017 (Κύπρος)
Απαντήσεις: 9
Προβολές: 1045

Re: Επαρχιακός Διαγωνισμός Μαθηματικών Γ' Λυκείου 2017 (Κύπρος)

Καλημέρα Σταύρο . Λόγω κυρτότητας η συνάρτηση εχει το πολύ δύο διαστήματα μονοτονίας ,επομένως το πολύ δύο ρίζες . Με βάση αυτό στο μυαλό μου , χωρίς όμως να το αναφέρω στη λύση , χρησιμοποίησα την έκφραση:" πρώτη ρίζα" , που όμως οπως σωστά λες δεν έχει γενική ισχύ !
από maiksoul
Κυρ Νοέμ 19, 2017 11:39 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Α'
Θέμα: Ίσα και άνισα που... δίνουν Ίσα !
Απαντήσεις: 1
Προβολές: 839

Ίσα και άνισα που... δίνουν Ίσα !

Να βρεθούν οι $a,b \in R$ οι οποίοι έχουν τις ακόλουθες δύο ιδιότητες : $\bigstar \left | a+1 \right |+\left | 2a-b+4 \right |=a-b+3$ $\bigstar a^{2}\cdot b+3a^{3}+6b+18a+5=b^{2}+3ab$ Καλησπέρα ,πρόκειται για μια ιδιοκατασκευή. Δεν ξέρω πόση ώρα θα πάρει στους λύτες ,που θα ασχοληθούν μαζί της , να ...
από maiksoul
Κυρ Νοέμ 19, 2017 1:32 am
Δ. Συζήτηση: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΑ - ΣΥΝΕΧΕΙΑ
Θέμα: Συνάρτηση 1-1
Απαντήσεις: 9
Προβολές: 1607

Re: Συνάρτηση 1-1

Πάρα πολύ ωραία σκέψη ! Σε ευχαριστώ πολύ Δημήτρη !
από maiksoul
Κυρ Νοέμ 19, 2017 12:38 am
Δ. Συζήτηση: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΑ - ΣΥΝΕΧΕΙΑ
Θέμα: 1-1
Απαντήσεις: 1
Προβολές: 751

1-1

Με αφορμή αυτήν viewtopic.php?f=52&t=60269, που πρότεινε ο κύριος Στεργίου

ΑΣΚΗΣΗ

Να αποδείξετε ότι κάθε συνάρτηση f με την ιδιότητα  e^{f(x)}+xf(x) =x\ln x +x -2 , \forall x>0 είναι 1-1
από maiksoul
Κυρ Νοέμ 19, 2017 12:24 am
Δ. Συζήτηση: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΑ - ΣΥΝΕΧΕΙΑ
Θέμα: Συνάρτηση 1-1
Απαντήσεις: 9
Προβολές: 1607

Re: Συνάρτηση 1-1

Καλησπέρα .Στο παρακάτω σημείο Παρατηρούμε ότι, για κάθε $a \in \mathbb{R}$ και $g(x)=x \ln x + ax$ ισχύει ότι το $g^{-1} (x)$ είναι μονοσύνολο για $x>0$. πως γνωρίζουμε ότι η $g$ είναι αντιστρέψιμη για κάθε $a \in \mathbb{R}$; Δημήτρη ,μπορείς λίγο να εξηγήσεις λίγο αναλυτικότερα την σκέψη σου; Ευχ...
από maiksoul
Κυρ Νοέμ 19, 2017 12:14 am
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Επαρχιακός Διαγωνισμός Μαθηματικών Γ' Λυκείου 2017 (Κύπρος)
Απαντήσεις: 9
Προβολές: 1045

Re: Επαρχιακός Διαγωνισμός Μαθηματικών Γ' Λυκείου 2017 (Κύπρος)

Πρόβλημα 3 Έστω συνάρτηση $f:[a,b] \to \mathbb{R}$, για την οποία ισχύουν: Συνεχής στο $[a,b]$ Δύο φορές παραγωγίσιμη στο $(a,b)$ με $f''(x) > 0, \, \forall x \in (a,b)$ $f(a) < 0 < f(b) $ Να αποδείξετε ότι υπάρχει μοναδικό $\rho \in (a,b)$ τέτοιο ώστε $f(\rho) =0$ . Καλησπέρα ,λίγο διαφορετικά από...
από maiksoul
Σάβ Αύγ 26, 2017 1:32 pm
Δ. Συζήτηση: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ'
Θέμα: Δύο ερωτήσεις σωστό-λάθος
Απαντήσεις: 4
Προβολές: 1021

Re: Δύο ερωτήσεις σωστό-λάθος

Για το 1ο ερώτημα 1.Αν $f(a)\neq f(b)$ και η $f$ παίρνει όλες τις ενδιάμεσες τιμές μεταξύ των $f(a),f(b)$ , τότε η $f$ είναι συνεχής στο $[a,b]$. Αν $f:[0,1]\rightarrow \mathbb{R}$ με $f(x)=x,\;\;\; x\in (0,1)$ και $f(0)=1 , f(1)=0$ έχουμε ένα ακόμα παράδειγμα ,που δείχνει ότι ο παραπάνω ισχυρισμός ...
από maiksoul
Πέμ Αύγ 10, 2017 11:11 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Α'
Θέμα: Εωσφορική ...Ανίσωση
Απαντήσεις: 5
Προβολές: 1076

Re: Εωσφορική ...Ανίσωση

Καλησπέρα . Σας ευχαριστώ όλους για την ενασχόληση με την άσκηση.Μια σχεδόν ίδια αντιμετώπιση είναι η εξής: Η ανίσωση ορίζεται όταν $x^2-x\geq0\;\;\;(1)$. Όπως και πριν , καταλήγουμε στην εξίσωση $x^4-2x+1=0$ η οποία γίνεται: $x^4-2x^2+2x^2-2x+1=0$ $(x^2-1)^2+2(x^2-x)=0$ επομένως παίρνουμε : $x^2-1=...
από maiksoul
Δευ Αύγ 07, 2017 10:40 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Α'
Θέμα: Εωσφορική ...Ανίσωση
Απαντήσεις: 5
Προβολές: 1076

Re: Εωσφορική ...Ανίσωση

Γεια σου Σταύρο ! Παντως δεν ήταν ανίσωση για εξίσωση θα την έλεγα Όλοι οι καθηγητές γνωρίζουμε οτι το ζητούμενο είναι εξίσωση ,όμως αυτό δεν το αναγνωρίζουν ολοι οι μαθητές ! Είναι ,ας πούμε , ένα αρχικό στάδιο προβληματισμού για τους μαθητές ! Πάντως δεν ήταν ούτε εωσφορική :) ! Εχει ενδιαφέρον να...
από maiksoul
Δευ Αύγ 07, 2017 6:39 pm
Δ. Συζήτηση: Γενικά Μηνύματα
Θέμα: Του Σωτήρος
Απαντήσεις: 27
Προβολές: 1974

Re: Του Σωτήρος

Χρόνια Πολλά και Καλά σε όλους τους εορτάζοντες !
από maiksoul
Δευ Αύγ 07, 2017 6:30 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Α'
Θέμα: Εωσφορική ...Ανίσωση
Απαντήσεις: 5
Προβολές: 1076

Εωσφορική ...Ανίσωση

Να λυθεί η ανίσωση : \;\frac{\;\left |\; x^{4}-\;2\;\cdot x\;+\;1 \right |\;}{\;\sqrt{\;x^{2}-x\;}\;+\;1\;}\leq 0\;
από maiksoul
Παρ Αύγ 04, 2017 8:57 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Α'
Θέμα: Απόλυτη..τιμή..
Απαντήσεις: 7
Προβολές: 1435

Re: Απόλυτη..τιμή..

Άν $x_{1}\neq 1$ και $x_{2}\neq 2$ με $x_{1}< x_{2}$ , ρίζες του $f(x)=ax^{2}+bx+c$,όπου $a,b,c\in \Re$ και ισχύει: $4a^{2}+3ab+2ac> 0...(1)$, να βρεθεί η τιμή της παράστασης:$(\;\frac{\left | x_{1}-1 \right |}{x_{1}-1}-1\;)\cdot (\;\frac{\left | x_{2}-2 \right |}{x_{2}-2}+1\;)$ Μια ακόμη λύση είνα...
από maiksoul
Πέμ Αύγ 03, 2017 2:42 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Β'
Θέμα: Αντίθετες ρίζες
Απαντήσεις: 11
Προβολές: 1559

Re: Αντίθετες ρίζες

Καλό μεσημέρι ! Αυτό που εννοούσα στην εκφώνηση είναι : ... " στο σύνολο λύσεων της ανίσωσης περιέχονται μόνο δύο αντίθετοι αριθμοί " Η συγγεκριμμένη άσκηση , φαίνεται πως προκάλεσε προβλήματα σε αρκετό κόσμο και δεν το ήθελα .Προσπάθησα να μοιραστώ κάτι και ταλαιπώρησα κάποιους εξαρχής. Είναι γνωστ...
από maiksoul
Δευ Ιούλ 31, 2017 10:58 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Β'
Θέμα: Αντίθετες ρίζες
Απαντήσεις: 11
Προβολές: 1559

Re: Αντίθετες ρίζες

Σταύρο , προσωπικά δεν θεωρώ οτι μπορεί να προκαλέσει πρόβλημα η διατύπωση , παρόλα αυτά την τροποποίησα κάπως ,ώστε να γίνει ακόμα σαφέστερη . Ελπίζω τώρα να σε ικανοποιεί και να ναι εντάξει ! Καλό βράδυ και καλή συνέχεια .
από maiksoul
Δευ Ιούλ 31, 2017 8:32 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Β'
Θέμα: Αντίθετες ρίζες
Απαντήσεις: 11
Προβολές: 1559

Re: Αντίθετες ρίζες

Καλό απόγευμα Σταύρο ! Στην πρώτη ερώτηση σου η απάντηση είναι Όχι εννοώ την ανίσωση, όμως παρόλα αυτά έχω κάνει ένα τυπογραφικό λάθος και σε ευχαριστώ για αυτή σου την επισήμανση η ανίσωση πρέπει να γράφει ως εξής :$x^3+(a+2)x^2+(a-2)x-2a\geq 0$ Για τη δεύτερη ερώτηση, δεν εννοώ πως η ανίσωση έχει ...
από maiksoul
Δευ Ιούλ 31, 2017 3:50 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Α'
Θέμα: Απόλυτη..τιμή..
Απαντήσεις: 7
Προβολές: 1435

Re: Απόλυτη..τιμή..

Γεια σου Σταμάτη , ευχαριστώ για το χρόνο σου! Ίσως και να κάνω λάθος, νομίζω ότι στη δεύτερη περίπτωση υπάρχει τυπογραφικό λάθος που έχει οδηγήσει στο άτοπο. Αν κάνω λάθος ζητάω συγνώμη( είμαι και κάπως ζαλισμένος!) .Δες το καλύτερα και εσύ . Καλό μεσημέρι !
από maiksoul
Δευ Ιούλ 31, 2017 2:13 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Β'
Θέμα: Αντίθετες ρίζες
Απαντήσεις: 11
Προβολές: 1559

Αντίθετες ρίζες

Να λυθεί η ανίσωση : x^3+(a+1)x^2+(a-2)x-2a\geq 0 ,\;\;\;a\in \Re

αν είναι γνωστό ότι από τις ρίζες που έχει μόνο δύο είναι αντίθετες.

Έγινε διόρθωση της εκφώνησης , μετά από μια επισήμανση του Σταύρου Παπαδόπουλου παρακάτω.Συγνώμη αν ταλαιπώρησα κάποιους.

Επιστροφή στην ειδική αναζήτηση