Η αναζήτηση βρήκε 129 εγγραφές

από nikos_el
Τρί Δεκ 17, 2019 8:35 pm
Δ. Συζήτηση: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Ολοκληρώματα: Συλλογή ασκήσεων
Απαντήσεις: 279
Προβολές: 10911

Re: Ολοκληρώματα: Συλλογή ασκήσεων

Άσκηση 11 Υπολογίστε το : $\displaystyle \int \frac{dx}{2+\sqrt{4x}}$ Υπολογίστε το : $\displaystyle \lim\limits _{n \to +\infty}\int_{n^2}^{(n+1)^2}\frac{dx}{2+\sqrt{4x}}$ Θέτουμε $\displaystyle u=\sqrt{x}\Leftrightarrow x=u^2$, οπότε $\displaystyle dx=2udu$ και έχουμε: $\displaystyle \int \dfrac{...
από nikos_el
Δευ Δεκ 16, 2019 1:09 am
Δ. Συζήτηση: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Ολοκληρώματα: Συλλογή ασκήσεων
Απαντήσεις: 279
Προβολές: 10911

Re: Ολοκληρώματα: Συλλογή ασκήσεων

Άσκηση 6 Να υπολογισθεί το ολοκλήρωμα $\displaystyle{\displaystyle{\int \dfrac {e^x- \cos x}{e^x- \cos x - \sin x} \, dx}}$ Αρκετά πονηρή. Αν δεν την δεις σωστά, μπορεί να σε παιδέψει. $\displaystyle \mathcal{I}=\int \dfrac{e^x-\cos x}{e^x-\cos x-\sin x}\, dx=\int \dfrac{\left(e^x-\cos x-\sin x\rig...
από nikos_el
Δευ Νοέμ 04, 2019 7:44 pm
Δ. Συζήτηση: Διασκεδαστικά Μαθηματικά
Θέμα: Πεντάλφα
Απαντήσεις: 4
Προβολές: 209

Re: Πεντάλφα

Mihalis_Lambrou έγραψε:
Δευ Νοέμ 04, 2019 7:36 pm
Νίκο, δεκτό;
:10sta10:

Ας προσπαθήσουμε τώρα να βρούμε λύση στην οποία να εμφανίζονται 10 μη επικαλυπτόμενα τρίγωνα και όχι άλλα σχήματα (ούτε εγώ ξέρω πως να το κάνω αυτό.)
από nikos_el
Δευ Νοέμ 04, 2019 6:22 pm
Δ. Συζήτηση: Διασκεδαστικά Μαθηματικά
Θέμα: Πεντάλφα
Απαντήσεις: 4
Προβολές: 209

Re: Πεντάλφα

Μία πεντάλφα αποτελείται από έξι μη επικαλυπτόμενα σχήματα: πέντε τρίγωνα και ένα (το εσωτερικό) πεντάγωνο. Μπορούμε να φέρουμε δύο ευθείες έτσι, ώστε στο σχήμα που θα προκύψει να υπάρχουν δέκα μη επικαλυπτόμενα τρίγωνα; Εάν επιτρέπεις εκτός από τα $10$ μη επικαλυπτόμενα τρίγωνα να υπάρχουν και άλλ...
από nikos_el
Δευ Νοέμ 04, 2019 2:49 pm
Δ. Συζήτηση: Διασκεδαστικά Μαθηματικά
Θέμα: Πεντάλφα
Απαντήσεις: 4
Προβολές: 209

Πεντάλφα

Μία πεντάλφα αποτελείται από έξι μη επικαλυπτόμενα σχήματα: πέντε τρίγωνα και ένα (το εσωτερικό) πεντάγωνο. Μπορούμε να φέρουμε δύο ευθείες έτσι, ώστε στο σχήμα που θα προκύψει να υπάρχουν δέκα μη επικαλυπτόμενα τρίγωνα;
από nikos_el
Πέμ Οκτ 24, 2019 4:26 pm
Δ. Συζήτηση: ΑΛΓΕΒΡΑ
Θέμα: Μηδενικό γινόμενο πινάκων
Απαντήσεις: 1
Προβολές: 220

Μηδενικό γινόμενο πινάκων

Έστω δύο $\displaystyle{n\times n}$ πίνακες $\displaystyle{A,B\in\mathcal{M}_n\left(\mathbb{R}\right)}$ τέτοιοι, ώστε $\displaystyle{A^2=A}$, $\displaystyle{B^2=B}$ και $\displaystyle{\left(A+B\right)^2=A+B}$. Να δείξετε ότι $\displaystyle{AB=-BA=\mathbb{O}}$. (Γραμμική Άλγεβρα και Αναλυτική Γεωμετρ...
από nikos_el
Τετ Οκτ 09, 2019 2:08 am
Δ. Συζήτηση: Διασκεδαστικά Μαθηματικά
Θέμα: Τετραψήφιος ανάποδα
Απαντήσεις: 6
Προβολές: 311

Re: Τετραψήφιος ανάποδα

Γενικεύοντας:

Να δειχθεί ότι οι μόνοι τετραψήφιοι \displaystyle {\overline {abcd}} οι οποίοι διαιρούν τους "ανάποδούς" τους \displaystyle{ \overline {dcba}}, είναι αυτοί οι δύο αριθμοί που βρέθηκαν παραπάνω.
από nikos_el
Τετ Οκτ 09, 2019 2:03 am
Δ. Συζήτηση: Διασκεδαστικά Μαθηματικά
Θέμα: Τετραψήφιος ανάποδα
Απαντήσεις: 6
Προβολές: 311

Re: Τετραψήφιος ανάποδα

Mihalis_Lambrou έγραψε:
Τρί Οκτ 08, 2019 8:40 pm
Να βρεθεί τετραψήφιος με

\displaystyle{ 4 \times \overline {abcd}=\overline {dcba}}
Να βρεθεί τετραψήφιος με

\displaystyle{ 9 \times \overline {abcd}=\overline {dcba}}
από nikos_el
Παρ Αύγ 09, 2019 8:59 pm
Δ. Συζήτηση: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Ορισμένο ολοκλήρωμα
Απαντήσεις: 2
Προβολές: 392

Re: Ορισμένο ολοκλήρωμα

Για να αποφύγουμε την τριγωνομετρική αντικατάσταση: Θέτοντας $y=\sqrt{\left(x-7\right)\left(19-x\right)}$ μετά από πράξεις βρίσκουμε $\left(x-13\right)^2+y^2=6^2$, που παριστάνει κύκλο με κέντρο $K\left(13,0\right)$ και ακτίνα $r=6$. Ο κύκλος τέμνει τον άξονα $x'x$ στα σημεία $A\left(7,0\right)$ και...
από nikos_el
Δευ Μάιος 20, 2019 7:44 pm
Δ. Συζήτηση: Ασκήσεις ΜΟΝΟ για φοιτητές
Θέμα: Οριο ακολουθίας
Απαντήσεις: 5
Προβολές: 727

Re: Οριο ακολουθίας

ΠΑΠΑΔΟΠΟΥΛΟΣ ΣΤΑΥΡΟΣ έγραψε:
Δευ Μάιος 20, 2019 7:28 pm
a^n\leqslant a_1^n+a_2^n+...+a_n^n\leqslant na^n

Η δεξιά ανισότητα είναι σωστή.

Η αριστερή έχει πρόβλημα.

Ισχύει για n\geq n_{0} αν a=a_{n_{0}}

Το πρόβλημα είναι αν a> a_{n},n\in \mathbb{N}
Σε αυτό το σημείο έγκειται και η αβεβαιότητα για την ορθότητα της λύσης μου.
από nikos_el
Δευ Μάιος 20, 2019 7:10 pm
Δ. Συζήτηση: Ασκήσεις ΜΟΝΟ για φοιτητές
Θέμα: Οριο ακολουθίας
Απαντήσεις: 5
Προβολές: 727

Re: Οριο ακολουθίας

Δεν είμαι απολύτως σίγουρος για την ορθότητα της λύσης: Έστω $a=\sup a_n$. Προφανώς, αφού $a_n>0\ \forall n\in\mathbb{N}$, είναι $a^n\leqslant a_1^n+a_2^n+...+a_n^n\leqslant na^n\Leftrightarrow a\leqslant b_n\leqslant a\sqrt[n]{n}$. Όμως, $\lim a=a$ και $\lim\left(a\sqrt[n]{n}\right)=a\lim\sqrt[n]{n...
από nikos_el
Κυρ Μάιος 19, 2019 1:11 pm
Δ. Συζήτηση: Ασκήσεις ΜΟΝΟ για φοιτητές
Θέμα: Όριο με ρίζα
Απαντήσεις: 4
Προβολές: 432

Re: Όριο με ρίζα

Έστω $a=\max\left\lbrace a_i\right\rbrace$. Προφανώς, αφού $a_i>0$, ισχύει: $a^n\leqslant a_1^n+a_2^n+...+a_k^n\leqslant ka^n\Leftrightarrow a\leqslant\sqrt[n]{a_1^n+a_2^n+...+a_k^n}\leqslant a\sqrt[n]{k}$. Όμως, $\lim a=a$ και $\lim\left(a\sqrt[n]{k}\right)=a\cdot\lim k^{1/n}=a$. Επομένως, από το κ...
από nikos_el
Πέμ Μαρ 14, 2019 1:36 am
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Μοναδική ρίζα
Απαντήσεις: 5
Προβολές: 524

Re: Μοναδική ρίζα

Λίγο διαφορετικά: Για κάθε $x\in\mathbb{R}$ έχουμε: $f'\left(x\right)>1 \Leftrightarrow \left(f\left(x\right)-x\right)'>0$, δηλαδή η συνάρτηση $g\left(x\right)=f\left(x\right)-x$ είναι γνησίως αύξουσα. Οπότε, για $x>0$ είναι: $g\left(x\right)>g\left(0\right)\Leftrightarrow f\left(x\right)>x+f\left(0...
από nikos_el
Πέμ Μαρ 14, 2019 1:29 am
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Μοναδική ρίζα
Απαντήσεις: 5
Προβολές: 524

Re: Μοναδική ρίζα

αφου το $x>0$ πως παίρνεις το όριο στο $-\infty$; Αν $x<0$, κάνοντας ΘΜΤ στο $\left(x,0\right)$ έχουμε ότι υπάρχει $\xi\in\left(x,0\right)$ τέτοιο, ώστε $f'\left(\xi\right)=\dfrac{f\left(0\right)-f\left(x\right)}{0-x}\Leftrightarrow f\left(x\right)=xf'\left(\xi\right)+f\left(0\right)$ (δηλαδή η ίδι...
από nikos_el
Πέμ Μαρ 14, 2019 12:28 am
Δ. Συζήτηση: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Μοναδική ρίζα
Απαντήσεις: 5
Προβολές: 524

Μοναδική ρίζα

Έστω παραγωγίσιμη συνάρτηση $f:\mathbb{R}\rightarrow\mathbb{R}$ με $f'\left(x\right)>1$, $\forall x\in\mathbb{R}$. Να δείξετε ότι η $f$ έχει μοναδική πραγματική ρίζα. Λύση Επειδή $f'\left(x\right)>0$, η $f$ είναι γνησίως αύξουσα, οπότε θα έχει το πολύ μία ρίζα. Σύμφωνα με το ΘΜΤ, για κάθε $x>0$, υπά...
από nikos_el
Παρ Φεβ 08, 2019 5:43 pm
Δ. Συζήτηση: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Ισότητα ολοκληρωμάτων
Απαντήσεις: 7
Προβολές: 843

Ισότητα ολοκληρωμάτων

Να δείξετε ότι δεν υπάρχει συνεχής συνάρτηση $f:\left[0,1\right]\rightarrow\left[0,+\infty\right)$ τέτοια, ώστε $\displaystyle \int_0^1f\left(x\right)dx=\int_0^1xf\left(x\right)dx=\int_0^1x^2f\left(x\right)dx=1$. Η λύση: Γενικά, αποδεικνύεται ότι, αν $f:\left[a,b\right]\rightarrow\left[0,+\infty)$ σ...
από nikos_el
Παρ Φεβ 08, 2019 4:36 pm
Δ. Συζήτηση: Ασκήσεις ΜΟΝΟ για φοιτητές
Θέμα: Ολοκληρωτική εξίσωση
Απαντήσεις: 1
Προβολές: 410

Ολοκληρωτική εξίσωση

Να προσδιοριστεί συνεχής συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} τέτοια, ώστε \displaystyle f\left(x\right)=\left(1+x^2\right)\left(1+\int_0^x\dfrac{f\left(t\right)}{1+t^2}dt\right), για κάθε x\in\mathb{R}.

Μέχρι 12/02/2019
από nikos_el
Δευ Ιαν 21, 2019 12:45 pm
Δ. Συζήτηση: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Θέμα: Επίλυση εξίσωσης
Απαντήσεις: 8
Προβολές: 879

Re: Επίλυση εξίσωσης

Πρέπει $\displaystyle x>1$. 'Εχουμε: $\displaystyle {\int_e^x \dfrac{1}{t\ln t}} dt=e-x\Leftrightarrow {\int_e^x \dfrac{1}{t\ln t}} dt={\int_x^e 1} dt\Leftrightarrow {\int_e^x \left(\dfrac{1}{t\ln t}+1\right)} dt=0$. Όμως, ισχύει: $\displaystyle \dfrac{1}{t\ln t}+1>0$, $\displaystyle \forall t>1$. Ο...
από nikos_el
Δευ Νοέμ 19, 2018 7:16 pm
Δ. Συζήτηση: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΑ - ΣΥΝΕΧΕΙΑ
Θέμα: Σωστό - Λάθος στη Συνέχεια
Απαντήσεις: 3
Προβολές: 510

Re: Σωστό - Λάθος στη Συνέχεια

Mihalis_Lambrou έγραψε:
Δευ Νοέμ 19, 2018 5:19 pm
Υπόδειξη: f(x)=1 για x ανήκει κάπου, και -1 κάπου αλλού.
Αυτό αν η f δεν είναι συνεχής. Αν είναι συνεχής, τότε είναι πράγματι σταθερή.
από nikos_el
Δευ Νοέμ 19, 2018 3:28 pm
Δ. Συζήτηση: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΑ - ΣΥΝΕΧΕΙΑ
Θέμα: Σωστό - Λάθος στη Συνέχεια
Απαντήσεις: 3
Προβολές: 510

Σωστό - Λάθος στη Συνέχεια

Σωστό ή Λάθος;
Αν f:\left(-2,2\right)\rightarrow\mathbb{R} συνεχής με f^2\left(x\right)=c, c\geqslant0, τότε η f είναι σταθερή.

Αν η f δεν ήταν συνεχής;

Επιστροφή στην ειδική αναζήτηση