Το πρόβλημα είναι ισοδύναμο με το εξής: "Δίνεται τρίγωνο $ABC$ με πλευρές $x_0,y_0,z_0$ εμβαδού $E$. Να αποδειχθεί ότι αν αφήσουμε την πλευρά $z_0$ σταθερή και μεγαλώσουμε την $x_0$ τότε θα υπάρχουν 4 τρίγωνα με το ίδιο εμβαδόν." Απόδειξη: Έστω ότι $z_0=BC$. Φέρνουμε τις 2 παράλληλες στην $BC$ που ...
Το πρόβλημα είναι ισοδύναμο με το εξής: "Δίνεται τρίγωνο $ABC$ με πλευρές $x_0,y_0,z_0$ εμβαδού $E$. Να αποδειχθεί ότι αν αφήσουμε την πλευρά $z_0$ σταθερή και μεγαλώσουμε την $x_0$ τότε θα υπάρχουν 4 τρίγωνα με το ίδιο εμβαδόν." Απόδειξη: Έστω ότι $z_0=BC$. Φέρνουμε τις 2 παράλληλες στην $BC$ που α...
Αν $x,y,z>0$ πραγματικοί αριθμοί ώστε $x+y+z =3 $, τότε να αποδειχθεί ότι: $\displaystyle{8 \left( \frac{1}{x} + \frac{1}{y} +\frac{1}{z} \right) + 9 \geq 10(x^2 + y^2 + z^2 )}$. Με u,v,w(*) η δοσμένη γίνεται: $f(w^3)=(60v-81)w^3+24v\geq 0$ που είναι γραμμική ως προς $w^3$ οπότε αρκεί να ελέγξουμε ...
Αλλά μια και μιλάμε για Cauchy-Schwartz ... παρατηρώ ότι με χρήση της ανάγεται η κυκλική, μη συμμετρική ανισότητα που πρότεινες αρχικά ( εδώ ) στην εξής συμμετρική ανισότητα: $a+b+c=3\rightarrow a^4b^4c^4(a^4+b^4+c^4)(a^2b^2+b^2c^2+c^2a^2)\leq 9$ Η παραπάνω ανισότητα ισχύει, αλλά δεν βλέπω κάποιον ...
Να αποδειχθεί ότι $\displaystyle{\rm \lim_{x\to +\infty}(e^{\sqrt{x^{2}+1}}-e^{x})=+\infty} $ Το θέμα αυτό μου τέθηκε την άνοιξη του 1997 από υποψήφιο της Α' Δέσμης. Τότε δούλευα σε ένα φροντιστήριο... Πιστεύω να μην έχει ξανατεθεί στο :logo: ... Όμορφο! Από ΘΜΤ στο $[x, \sqrt {x^2+1}]$ για την $f(...
Να αποδείξετε ότι αν $\displaystyle{\rm \lim_{x\to +\infty}(f(x)+g(x))=+\infty}$ τότε: (1) $\displaystyle{\rm \lim_{x\to +\infty}(f^2(x)+g^2(x))=+\infty}$ (2) $\displaystyle{\rm \lim_{x\to +\infty}(f^3(x)+g^3(x))=+\infty}$ Μέχρι τη Δευτέρα (1) Από την γνωστή $x^2+y^2\geq \dfrac {(x+y)^2}{2}$ γράφου...
ΓΙα την παραγωγίσιμη συνάρτηση $f:R\rightarrow R$ με $f'(x)\geq x^{2}+1, x\epsilon R$ , να δείξετε ότι $lim_{x\rightarrow +\infty}f(x)=+\infty$. Από τη δοσμένη προκύπτει ότι $f'(x)\geq 1$ (1). Από ΘΜΤ στο $[0,x]$ παίρνουμε πως υπάρχει $k$ στο διάστημα αυτό ώστε: $f'(k)=\dfrac {f(x)-f(0)}{x}$ όμως α...