Η αναζήτηση βρήκε 530 εγγραφές

από JimNt.
Κυρ Μαρ 31, 2019 8:50 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Διπλάσιο τμήμα !
Απαντήσεις: 5
Προβολές: 307

Re: Διπλάσιο τμήμα !

Ένα τρίγωνο $ABC$ είναι εγγεγραμμένο σε κύκλο (C) και ας είναι $AD$ ένα από τα ύψη του. Αν $G$ είναι το βαρύκεντρο του $ABC$ και η ευθεία $DG$ τέμνει τον (C) στο $P$ , να αποδειχθεί ότι $GP=2GD$. thmima2019.PNG Δεν είναι άμεσο από την αρνητική ομοιοθεσία κέντρου G που στέλνει τον κύκλο Euler στον π...
από JimNt.
Σάβ Μαρ 30, 2019 5:41 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΝΕΩΝ ( Junior ) - 2019
Απαντήσεις: 19
Προβολές: 1984

Re: Επιλογη Junior 2019

Τσιαλας Νικολαος έγραψε:
Σάβ Μαρ 30, 2019 5:35 pm
Συγχαρητήρια σε όλους τους συμμετέχοντες! Έχω την εντύπωση ότι τα θέματα δεν έπρεπε να δημοσιευτούν. Αν επιτρέπεται όμως έχω και στην κατοχή μου των μεγάλων! Ας μας διαφωτίσει κάποιος :)
Των μεγάλων δεν επιτρέπεται από ό,τι άκουσα.
από JimNt.
Σάβ Φεβ 23, 2019 9:15 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΑΡΧΙΜΗΔΗΣ 2018-2019
Απαντήσεις: 59
Προβολές: 7320

Re: ΑΡΧΙΜΗΔΗΣ 2018-2019

Βάζω τα θέματα σε φωτογραφίες όπως πάντα γιατί είμαι στο εξεταστικό κέντρο...καλά αποτελέσματα σε όλα τα παιδιά!!IMG_20190223_111022.jpgIMG_20190223_110955.jpg Θα κάνω τον δικηγόρο του διαβόλου και θα πω ότι το 4o θέμα σηκώνει μεγάλες παρεξηγήσεις. Η εκφώνηση λέει «τον ελάχιστο αριθμο μαύρων πιονιώ...
από JimNt.
Σάβ Φεβ 23, 2019 8:57 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΑΡΧΙΜΗΔΗΣ 2018-2019
Απαντήσεις: 59
Προβολές: 7320

Re: ΑΡΧΙΜΗΔΗΣ 2018-2019

Δόθηκε διευκρίνιση ότι δεν ισχύει το παραπάνω (αρκεί). Βέβαια έπειτα από ερώτηση μαθητή
από JimNt.
Σάβ Φεβ 23, 2019 4:07 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΑΡΧΙΜΗΔΗΣ 2018-2019
Απαντήσεις: 59
Προβολές: 7320

Re: ΑΡΧΙΜΗΔΗΣ 2018-2019

Για το $4$ των μικρών. Σε καμία περίπτωση δεν γίνεται οι $5a-2b$, $3a-4b$ να είναι και οι δύο πολλαπλάσια των $3$ εκτός αν $3|a,b$. Συνεπώς, πάντα θα υπάρχει κάποιος που δεν διαιρείται με το $3$, αφού αν wlog $x$ ο τελευταίος που δεν διαιρείται από αυτό τότε θα επιλεχθεί μαζί με πολλαπλάσιο του $3$...
από JimNt.
Σάβ Φεβ 23, 2019 3:28 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΑΡΧΙΜΗΔΗΣ 2018-2019
Απαντήσεις: 59
Προβολές: 7320

Re: ΑΡΧΙΜΗΔΗΣ 2018-2019

Για το $4$ των μικρών. Σε καμία περίπτωση δεν γίνεται οι $5a-2b$, $3a-4b$ να είναι και οι δύο πολλαπλάσια των $3$ εκτός αν $3|a,b$. Συνεπώς, πάντα θα υπάρχει κάποιος που δεν διαιρείται με το $3$, αφού αν wlog $x$ ο τελευταίος που δεν διαιρείται από αυτό τότε θα επιλεχθεί μαζί με πολλαπλάσιο του $3$ ...
από JimNt.
Τετ Φεβ 20, 2019 10:42 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Συναρτησιακή
Απαντήσεις: 0
Προβολές: 334

Συναρτησιακή

Να βρεθούν όλες οι συναρτήσεις f:\mathbb{Z^+} \rightarrow \mathbb{Z}^{+}, ώστε για κάθε ζεύγος (x,y) θετικών ακεραίων η f(x)+2f(y)-2xy να είναι μη μηδενική και f(x)+2f(y)-2xy|f(x)^2+4y^2f(y)
από JimNt.
Κυρ Φεβ 10, 2019 11:01 am
Δ. Συζήτηση: Γεωμετρία - Προχωρημένο Επίπεδο (Seniors)
Θέμα: Γωνίες με κοινή διχοτόμο
Απαντήσεις: 5
Προβολές: 389

Re: Γωνίες με κοινή διχοτόμο

Διαφορετικά με δύναμη σημείου και νόμο συνημιτόνων προκύπτει ότι οι εφαπτομένες των δύο γωνιών είναι ίσες από όπου προκύπτει το ζητούμενο.
από JimNt.
Πέμ Φεβ 07, 2019 7:51 am
Δ. Συζήτηση: ΑΛΓΕΒΡΑ Β'
Θέμα: Σταθερό πολυώνυμο
Απαντήσεις: 3
Προβολές: 274

Re: Σταθερό πολυώνυμο

panagiotis iliopoulos έγραψε:
Πέμ Φεβ 07, 2019 7:29 am
Καλησπέρα σας. Αν για ένα πολυώνυμο ισχύει P(x)=P(x+k), k\neq 0 για κάθε x\epsilon R τότε μπορώ να συμπεράνω ότι το πολυώνυμο είναι σταθερό;
Ναι. Αν θεωρήσεις μια ρίζα (υποθέτεις ότι δεν είναι μηδενικό) τότε παίρνεις άπειρο πλήθος ριζών, που είναι άτοπο. Άρα P σταθερό.
από JimNt.
Κυρ Φεβ 03, 2019 4:53 pm
Δ. Συζήτηση: Θεωρία Αριθμών - Προχωρημένο Επίπεδο (Juniors)
Θέμα: Απλή και Ωραία
Απαντήσεις: 1
Προβολές: 320

Απλή και Ωραία

Να βρεθούν όλα τα ζεύγη θετικών ακεραίων (x,y) που ικανοποιούν την xy=\dbinom{x}{y}
από JimNt.
Κυρ Φεβ 03, 2019 12:04 pm
Δ. Συζήτηση: Ανάλυση
Θέμα: Βοήθεια σε μια άσκηση
Απαντήσεις: 15
Προβολές: 601

Re: Βοήθεια σε μια άσκηση

http://11dim-evosm.thess.sch.gr/old/online/glossa/orthpoly/index.htm Το επίθετο πολύς - πολλή - πολύ συνοδεύει |ουσιαστικά| και κλίνεται και στα τρία γένη. Το επίρρημα πολύ δεν κλίνεται και συνοδεύει ρήματα, επιρρήματα, επίθετα ή μετοχές.
από JimNt.
Κυρ Φεβ 03, 2019 11:06 am
Δ. Συζήτηση: Ανάλυση
Θέμα: Βοήθεια σε μια άσκηση
Απαντήσεις: 15
Προβολές: 601

Re: Βοήθεια σε μια ασκήσει

Τόλη, δεν κάνεις καλά να δίνεις λύση, έστω σε hide, για απλές ασκήσεις όταν κάποιος είναι σε διαδικασία μάθησης. Μία υπόδειξη θα ήταν αρκετή (και ΠΟΛΛΗ χρήσιμη στον ίδιο). Π.χ. δες τι έγραψα παραπάνω: Γράψε το ποστ σου σε Latex όπως πολύ σωστά απαιτούν οι κανονισμοί μας (τους διάβασες άραγε;), και ...
από JimNt.
Παρ Ιαν 11, 2019 11:22 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Συνευθειακά!
Απαντήσεις: 1
Προβολές: 236

Re: Συνευθειακά!

Αρκεί ML κάθετη της AP ή ισοδύναμα MP διάμετρος του κύκλου (MNP). Από γνωστή ομοιοθεσία NP διχοτομεί την BNC. Άρα \dfrac{BN}{NC}=\dfrac{BP}{PC}=\dfrac{MB}{MC} . Συνεπώς, ο MNP είναι P απολλώνιος κύκλος ως προς την BC άρα το κέντρο του θα είναι στην BC.
από JimNt.
Δευ Ιαν 07, 2019 11:18 am
Δ. Συζήτηση: Θεωρία Αριθμών - Προχωρημένο Επίπεδο (Seniors)
Θέμα: Με 3 αγνώστους
Απαντήσεις: 3
Προβολές: 335

Re: Με 3 αγνώστους

Δεν χρειάζεται καν το δεδομένο ότι p πρώτος.
από JimNt.
Πέμ Δεκ 20, 2018 2:55 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Ομοκυκλικά
Απαντήσεις: 9
Προβολές: 610

Re: Ομοκυκλικά

Το γνωρίζω και ζητώ συγνώμη.
από JimNt.
Κυρ Δεκ 16, 2018 11:52 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Χριστουγεννιάτικη
Απαντήσεις: 3
Προβολές: 359

Χριστουγεννιάτικη

Να βρεθούν όλες οι f: \mathbb{Z^{+}} \rightarrow \mathbb{Z^{+}} ώστε για κάθε ζεύγος θετικών ακεραίων να ισχύει ότι xf(x)+y|f(x)^2+f(y). Για μαθητές μέχρι την Τετάρτη.
από JimNt.
Κυρ Δεκ 16, 2018 11:48 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Ομοκυκλικά
Απαντήσεις: 9
Προβολές: 610

Ομοκυκλικά

Δίνεται οξυγώνιο τρίγωνο ABC και το ορθόκεντρο H. Αν η AH τέμνει τον περιγεγραμμένο κύκλο του τριγώνου στο D και N είναι η προβολή του H στην διάμεσο AM, να προσδιοριστεί σημείο E πάνω στην BC ώστε A,N,E,D ομοκυκλικά. Για μαθητές μέχρι την Τετάρτη.
από JimNt.
Κυρ Δεκ 09, 2018 11:42 pm
Δ. Συζήτηση: Θεωρία Αριθμών - Προχωρημένο Επίπεδο (Seniors)
Θέμα: 0-1
Απαντήσεις: 2
Προβολές: 275

Re: 0-1

Είναι άμεσο με επαγωγή στο πλήθος των ψηφίων και λίγη φαντασία για το πώς θα κολληθούν τα κομμάτια στην περίπτωση που έχουμε δύο εξωτερικά $1$αρια ή δύο $0$ικα.(ουσιαστικά και αυτό άμεσα προκύπτει αφού διαφορετικά θα πρέπει σε κάθε substring με αρχή ένα από τα δύο εξωτερικά να υπερτερεί το πλήθος τω...
από JimNt.
Τετ Δεκ 05, 2018 8:06 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Θαλή/Ευκλείδη (Seniors)
Θέμα: Γιατί Όχι;
Απαντήσεις: 3
Προβολές: 346

Re: Γιατί Όχι;

Κάτι δεν πάει καλά με την εκφώνηση... (μάλλον είναι οι προβολές του $E$ στις $AB$ και $CD$) Λίγο βιαστικά: Έστω $S, T$ οι προβολές του $E$ στις $AB, CD$ αντίστοιχα και $R$ το σημείο τομή των $FG$ και $OE$. Έστω ακόμη $K$ το σημείο τομής των $AB, CD$. Καταρχάς αφού $\widehat{ESK}=\widehat{ETK}=90^o$...

Επιστροφή στην ειδική αναζήτηση