Η αναζήτηση βρήκε 183 εγγραφές

από Xriiiiistos
Σάβ Ιούλ 20, 2019 3:09 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: IMO 2019
Απαντήσεις: 28
Προβολές: 2507

Re: IMO 2019

Συγχαρητήρια σε όλους όσους συμμετείχαν με οποιοδήποτε τρόπο και κυρίως στα παιδιά που αγωνίστηκαν σε αυτόν τον απαιτητικό διαγωνισμό.
από Xriiiiistos
Παρ Ιούλ 19, 2019 7:36 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Και εκθετική ανίσωση
Απαντήσεις: 0
Προβολές: 97

Και εκθετική ανίσωση

Για τους θετικούς a\geq b,c να αποδειχθεί

(a+b)^{b}+(a+c)^{c}\geq 2a\sqrt{\dfrac{b^{b}c^{c}}{(a+b)(a+c)}}+4\sqrt{\dfrac{a\cdot b^{b+1}c^{c+1}}{(a+b)(a+c)}}

και να εξεταστεί αν χρειάζεται η ισότητα.
από Xriiiiistos
Παρ Ιούλ 05, 2019 4:14 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Θαλή/Ευκλείδη (Juniors)
Θέμα: Τυχαίο σημείο σε πολύγωνο
Απαντήσεις: 2
Προβολές: 155

Re: Τυχαίο σημείο σε πολύγωνο

Βασικά είναι μια μορφή γενίκευσης της τριγωνομετρικής μορφής Ceva. Mια άλλη γενίκευση για την μετρική σχέση ceva στο κύκλο είναι πως αν τα σημεία $A,B,C,D,E,F$ είναι σημεία της περιμέτρου κύκλου τοποθετημένα με αρκιβώς αυτήν την σειρά τότε οι $AD,BE,CF$ συντρέχουν αν και μόνο αν $\frac{AB}{BC}\cdot ...
από Xriiiiistos
Πέμ Ιουν 27, 2019 9:24 am
Δ. Συζήτηση: Εξετάσεις Προτύπων και Πειραματικών Σχολείων
Θέμα: Εξετάσεις πρότυπα γυμνάσια 2019
Απαντήσεις: 44
Προβολές: 2184

Re: Εξετάσεις πρότυπα γυμνάσια 2019

S.E.Louridas έγραψε:
Τετ Ιουν 26, 2019 8:42 am


Β) Για τις εξετάσεις προς το πρότυπο Γυμνάσιο θα πρέπει κατά την εκφώνηση και ρητά να απαγορεύεται η χρήση άλγεβρας.
Aυτό μου φαίνεται πολύ καταπιεστικό. Γιατί να μην αφήσουμε τον μαθητή να την λύση με τον δικό του τρόπου; Με τον τρόπο που ίσως να τον εκφράζει και περισσότερο;
από Xriiiiistos
Σάβ Ιουν 15, 2019 7:47 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: JBMO Τέστ Εξάσκησης #4
Απαντήσεις: 6
Προβολές: 490

Re: JBMO Τέστ Εξάσκησης #4

ΘΕΜΑ 4. Να δειχθεί ότι αν οι $a,b,c$ είναι θετικοί αριθμοί τέτοιοι ώστε $ab+bc+ca=3$ τότε $\displaystyle \dfrac{1}{1+a^2(b+c)}+\dfrac{1}{1+b^2(c+a)}+\dfrac{1}{1+c^2(a+b)}\leq \frac{1}{abc}. $ Από την ισότητα έχουμε $a(b+c)=3-bc\Leftrightarrow a^{2}(b+c)=3a-abc$ κάνοντάς το κυκλικά έχουμε $LHS=\sum ...
από Xriiiiistos
Σάβ Ιουν 15, 2019 6:32 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: JBMO Τέστ Εξάσκησης #1
Απαντήσεις: 7
Προβολές: 622

Re: JBMO Τέστ Εξάσκησης #1

ΘΕΜΑ 3. Να δειχθεί ότι αν οι $x,y,z$ είναι θετικοί αριθμοί, τότε $\displaystyle \dfrac{x^3}{z^3+x^2y}+\dfrac{y^3}{x^3+y^2z}+\dfrac{z^3}{y^3+z^2x}\geq \frac{3}{2}. $ Eνδιαφέρον, η $f(x)=\frac{1}{x}$ είναι κυρτή συνάρτηση στους θετικούς άρα από Jensen έχουμε $LHS=x^{3}f(z^{3}+x^{2}y)+y^{3}f(x^{3}+y^{...
από Xriiiiistos
Σάβ Ιουν 15, 2019 5:35 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: JBMO Τέστ Εξάσκησης #2
Απαντήσεις: 6
Προβολές: 365

Re: JBMO Τέστ Εξάσκησης #2

ΘΕΜΑ 3. Να δειχθεί ότι αν οι $a,b,c$ είναι θετικοί αριθμοί τέτοιοι ώστε $a^2+b^2+c^2=3$, τότε $\displaystyle \dfrac{1}{a}+\dfrac{3}{b}+\dfrac{5}{c}\geq 4a^2+3b^2+2c^2. $ Πότε ισχύει η ισότητα? Iσοδύναμα αρκεί να δείξω $b^{2}+2c^{2}+\frac{1}{a}+\frac{3}{b}+\frac{5}{c}\geq 12$ και το αριστερό μέλος γ...
από Xriiiiistos
Σάβ Ιουν 01, 2019 1:35 pm
Δ. Συζήτηση: Άλγεβρα - Προχωρημένο Επίπεδο (Seniors)
Θέμα: Περίεργη ανίσωση με εκθέτες
Απαντήσεις: 1
Προβολές: 243

Περίεργη ανίσωση με εκθέτες

x,y,z> 0 και x+y+z=4 δείξτε ότι

(y+1)^{y}+\frac{(x+1)^{(x+2)^{x+1}}}{x}+\frac{z^{2}}{z+1}> \frac{17}{3}+x

το x+2 είναι υψωμένο στο x+1
από Xriiiiistos
Πέμ Μάιος 30, 2019 12:24 am
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Σχέση από το πουθενά
Απαντήσεις: 1
Προβολές: 198

Re: Σχέση από το πουθενά

Δίνεται οξυγώνιο τρίγωνο $ABC$, το ορθόκεντρο του $H$ και το αντιδιαμετρικό του $A$, $A'$ στον περιγεγραμμένο κύκλο του $ABC$. Η παράλληλη από το $H$ ως προς την $BC$ τέμνει την $AB$ στο $M$ και την $AC$ στο $I$. Αν $N$ είναι το δεύτερο σημείο τομής των κύκλων $HA'A$ και $AMI$. Να αποδειχτεί $AM\cd...
από Xriiiiistos
Σάβ Μάιος 18, 2019 9:11 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: BMO Shortlist 2018 - Γεωμετρία
Απαντήσεις: 5
Προβολές: 671

Re: BMO Shortlist 2018 - Γεωμετρία

G2. Έστω τρίγωνο $ABC$ εγγεγραμμένο σε κύκλο $\Gamma$ με κέντρο $O$. Έστω $H$ το ορθόκεντρο του $ABC$ και $K$ το μέσο της $OH$. Η εφαπτομένη του $\Gamma$ στο $B$ τέμνει τη μεσοκάθετο της $AC$ στο $L$ και η εφαπτομένη του $\Gamma$ στο $C$ τέμνει τη μεσοκάθετο της $AB$ στο $M$. Να δειχθεί ότι οι $AK$...
από Xriiiiistos
Παρ Μάιος 17, 2019 7:38 am
Δ. Συζήτηση: ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Β'
Θέμα: Μαντέψτε πως σκέφτηκε
Απαντήσεις: 3
Προβολές: 523

Re: Μαντέψτε πως σκέφτηκε

Σε ημικύκλιο διαμέτρου $AB$ , είναι σχεδιασμένο τμήμα $CE\perp AB$ . Θέλοντας κάποιος να γράψει κύκλο ο οποίος να εφάπτεται των τμημάτων $EC , EB$ αλλά και του ημικυκλίου , ακολουθεί τα εξής βήματα . Αρχικά γράφει τόξο με ακτίνα $AC$ ,το οποίο τέμνει την $AB$ στο $D$ και στη συνέχεια σχεδιάζει τετρ...
από Xriiiiistos
Δευ Μάιος 13, 2019 6:35 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Θαλή/Ευκλείδη (Seniors)
Θέμα: Ίσες γωνίες
Απαντήσεις: 3
Προβολές: 189

Ίσες γωνίες

Στο τρίγωνο ABC ο εγγεγραμμένος του κύκλος εφάπτεται με τις BC,AC,AB στα D,E,Z και S η τομή των ευθειών ZE,BC. Από D φέρνουμε κάθετη (ε) προς την BC και το σημείο T είναι πάνω στην (ε) ώστε AT//BC. Να εξετάσετε αν ισχύει \widehat{AET}=\widehat{ESC}
από Xriiiiistos
Κυρ Μάιος 05, 2019 12:32 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: BMO Shortlist 2018 - Γεωμετρία
Απαντήσεις: 5
Προβολές: 671

Re: BMO Shortlist 2018 - Γεωμετρία

G1. Έστω οξυγώνιο τρίγωνο $ABC$ και έστω $M$ το μέσο της πλευράς $BC$. Έστω $D$ και $E$ τα παράκεντρα των τριγώνων $AMB$ και $AMC$ αντίστοιχα ως προς το σημείο $M$. Ο περιγεγραμμένος κύκλος του τριγώνου $ABD$ τέμνει την ευθεία $BC$ στα σημεία $B$ και $F$. Ο περιγεγραμμένος κύκλος του τριγώνου $ACE$...
από Xriiiiistos
Πέμ Μάιος 02, 2019 10:55 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: BMO Shortlist 2018 - Άλγεβρα
Απαντήσεις: 16
Προβολές: 1255

Re: BMO Shortlist 2018 - Άλγεβρα

A4. Έστω θετικοί πραγματικοί αριθμοί $a,b,c$ ώστε $abc=1$. Να αποδειχθεί ότι: $\displaystyle 2(a^2+b^2+c^2)\left(\frac1{a^2}+\frac1{b^2}+\frac1{c^2}\right) \geqslant 3(a+b+c+ab+bc+ca).$ Θέτοντας $a=\frac{x^{2}}{yz},b=\frac{y^{2}}{xz},c=\frac{z^{2}}{xy}$ η ανίσωση γίνεται $2(\frac{x^{6}+y^{6}+z^{6}}...
από Xriiiiistos
Τετ Μάιος 01, 2019 8:56 am
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: 11η Μαθηματική Ολυμπιάδα BENELUX 2019 Πρόβλημα 1
Απαντήσεις: 3
Προβολές: 403

Re: 11η Μαθηματική Ολυμπιάδα BENELUX 2019 Πρόβλημα 1

Πρόβλημα 1 α) Δίνονται οι πραγματικοί αριθμοί $a,b,c,d$ ώστε $0\leq a,b,c,d \leq 1$. Να αποδειχθεί ότι: $ab(a-b) + bc (b-c) + cd (c- d) + da (d-a) \leq \frac{8}{27}$. β) Να βρεθούν όλες οι τετράδες πραγματικών αριθμών $(a,b,c,d)$ , ώστε $0\leq a,b,c,d \leq 1$ για τις οποίες ισχύει η ισότητα στην πρ...
από Xriiiiistos
Παρ Απρ 26, 2019 2:04 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Μαθηματική Ολυμπιάδα Α.Πετρούπολης 2019 (ΦΙΙ τάξη 10)
Απαντήσεις: 9
Προβολές: 890

Re: Μαθηματική Ολυμπιάδα Α.Πετρούπολης 2019 (ΦΙΙ τάξη 10)

1. Για την μη σταθερή αριθμητική πρόοδο $\displaystyle \left ( a_{n}\right )$ υπάρχει τέτοιος μη μηδενικός φυσικός αριθμός $n$, ώστε $\displaystyle a_{n}+a_{n+1} = a_{1}+…+a_{3n-1}$. Να αποδείξετε, ότι σε αυτή την πρόοδο δεν υπάρχουν μηδενικοί όροι. (Σ. Ιβάνοβ) Πηγή η επίσημη σελίδα της ολυμπιάδας....
από Xriiiiistos
Δευ Απρ 08, 2019 3:47 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Θαλή/Ευκλείδη (Seniors)
Θέμα: Συντρέχουν
Απαντήσεις: 4
Προβολές: 308

Re: Συντρέχουν

Συντρέχουν.pngΣτο ορθογώνιο τραπέζιο $ABCD$ , το ημικύκλιο διαμέτρου $AB$ τέμνει τις διαγωνίους $AC,BD$ στα σημεία $T,Q$ αντίστοιχα . Δείξτε ότι οι ευθείες $AB , DC , QT$ συντρέχουν ( σε σημείο $S$ ) . Μιας και έχουμε το ίδιο σχήμα στην ωραία λύση του κ. Κούτρα δανείζομαι τα γράμματά του δηλαδή $DB...
από Xriiiiistos
Τετ Απρ 03, 2019 9:24 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Θαλή/Ευκλείδη (Juniors)
Θέμα: Μεγάλες κατασκευές 19
Απαντήσεις: 4
Προβολές: 281

Re: Μεγάλες κατασκευές 19

Μεγάλες κατασκευές 19.pngΚατασκευάστε σκαληνό τρίγωνο $\displaystyle ABC$ , στο οποίο αν το σημείο $N$ , είναι το μέσο της διαμέσου $AM$ , να προκύπτει και $NC=AB$ . Μπορούμε με διπλό θεώρημα διαμέσων να βγάλουμε μια σχέσεις μεταξύ των τμημάτων αλλά δεν βοηθά στη κατασκευή Έστω σημείο $S$ στο ημιεπ...
από Xriiiiistos
Τετ Απρ 03, 2019 8:41 pm
Δ. Συζήτηση: Γεωμετρία - Επίπεδο Θαλή/Ευκλείδη (Seniors)
Θέμα: Διχοτόμηση από κοινή χορδή
Απαντήσεις: 3
Προβολές: 254

Re: Διχοτόμηση από κοινή χορδή

Διχοτόμηση από κοινή χορδή.png Από το έγκεντρο $I$ τριγώνου $ABC$ φέρνουμε κάθετη στην $AI$ που τέμνει τον περίκυκλο του τριγώνου στα $P, Q.$ Οι κύκλοι $(P, I, B)$ και $(Q, I, C)$ επανατέμνονται στο $S.$ Να δείξετε ότι η $SI$ διχοτομεί τη γωνία $P\widehat SQ.$ $CI,BI$ ξανατέμνουν τον κύκλο στα $N,M...
από Xriiiiistos
Κυρ Μαρ 31, 2019 3:33 pm
Δ. Συζήτηση: Διασκεδαστικά Μαθηματικά
Θέμα: Εύρεση σημείου
Απαντήσεις: 4
Προβολές: 211

Re: Εύρεση σημείου

Εύρεση σημείου.png Δίδονται ένας κύκλος , Ένα σημείο $A$ εκτός αυτού και μια ευθεία . Να βρεθεί σημείο $M$ της ευθείας ώστε το $MA$ να ισούται με το εφαπτόμενο τμήμα $MB$ προς τον κύκλο . O κύκλος, το σημείο και η ευθεία είναι σταθερά σημεία οπότε τα $K,A$ θα απέχουν από την ευθεία $h_{1},h_{2}$ κα...

Επιστροφή στην ειδική αναζήτηση