Η αναζήτηση βρήκε 35 εγγραφές

από petrosqw
Τετ Νοέμ 20, 2019 10:54 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Θαλή/Ευκλείδη (Juniors)
Θέμα: Τετράγωνο ακεραίου
Απαντήσεις: 5
Προβολές: 179

Re: Τετράγωνο ακεραίου

Ας την δυσκολέψω λίγο:Να βρείτε για ποιες τιμές του ακεραίου k ο αριθμός 4k+1 είναι τέλειο τετράγωνο ακεραίου
από petrosqw
Τετ Νοέμ 20, 2019 4:07 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Θαλή/Ευκλείδη (Juniors)
Θέμα: Τετράγωνο ακεραίου
Απαντήσεις: 5
Προβολές: 179

Τετράγωνο ακεραίου

Να βρείτε για ποιες τιμές του ακεραίου k ο αριθμός 4k^{2}+1 είναι τέλειο τετράγωνο ακεραίου

Υ.Γ:Η άσκηση τοποθετήθηκε καταλάθος σε λάθος φάκελο
Όποιος μπορεί ας την βάλει στον σωστό(δεν ξέρω τον τρόπο)
από petrosqw
Τετ Νοέμ 20, 2019 1:18 pm
Δ. Συζήτηση: Άλγεβρα - Επίπεδο Θαλή/Ευκλείδη (Seniors)
Θέμα: Πολλαπλάσιο του 7
Απαντήσεις: 6
Προβολές: 249

Re: Πολλαπλάσιο του 7

Δεν βλέπω ουσιαστική διαφορά από αυτά που έγραψε ο Πρόδρομος παραπάνω. Ίσα ίσα τα έγραψε κομψότερα και χωρίς να πλατειάζει. Το να συγκρίνουμε τις λύσεις δύο μαθητών δεν νομίζω να ωφελεί ούτε αυτούς ούτε κανέναν Δεν νομίζω ότι εδώ στο mathematica αρμόζει να μπαίνουμε σε τέτοιες συγκρίσεις Ευχαριστώ
από petrosqw
Κυρ Νοέμ 10, 2019 5:28 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΘΑΛΗΣ 2019-2020
Απαντήσεις: 45
Προβολές: 4469

Re: ΘΑΛΗΣ 2019-2020

Καλησπέρα
Θα ήθελα να κάνω και άλλη μία ερώτηση
Αν κάποιος στην Γ'Λυκειου λύσει το πρόβλημα 2 με το δεδομένο ότι το Ε ανήκει στην ΑΓ και ότι ΔΕ και ΒΓ παράλληλες(τέτοια διευκρίνηση δόθηκε στο εξεταστικό κέντρο που έδινα)υπάρχει περίπτωση να πάρει κάποιες μονάδες;
από petrosqw
Σάβ Νοέμ 09, 2019 5:27 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΘΑΛΗΣ 2019-2020
Απαντήσεις: 45
Προβολές: 4469

Re: ΘΑΛΗΣ 2019-2020

Στο εξεταστικό κέντρο που έδινα δόθηκε διευκρίνηση για το θεμα 2 της Γ'Λυκείου ότι οι ΔΕ και ΒΓ είναι παράλληλες(δηλαδή ότι το Ε ήταν σημείο της ΑΓ) Μήπως αλλάζει κατι τελικά στον τρόπο λύσης του προβλήματος; Είναι λανθασμένη διευκρίνιση. Το πρόβλημα αλλάζει τελείως (και δεν ισχύει αυτό που ζητείτα...
από petrosqw
Σάβ Νοέμ 09, 2019 4:45 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΘΑΛΗΣ 2019-2020
Απαντήσεις: 45
Προβολές: 4469

Re: ΘΑΛΗΣ 2019-2020

Στο εξεταστικό κέντρο που έδινα δόθηκε διευκρίνηση για το θεμα 2 της Γ'Λυκείου ότι οι ΔΕ και ΒΓ είναι παράλληλες(δηλαδή ότι το Ε ήταν σημείο της ΑΓ)
Μήπως αλλάζει κατι τελικά στον τρόπο λύσης του προβλήματος;
από petrosqw
Σάβ Νοέμ 09, 2019 3:57 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΘΑΛΗΣ 2019-2020
Απαντήσεις: 45
Προβολές: 4469

Re: ΘΑΛΗΣ 2019-2020

Στο θέμα 1 της Γ'Λυκείου αν κάποιος έφτανε στην σχέση: $(2-x)^{3}(108(2-x)+(x+2)^{3})=0$ Και από εκει έβρισκε:$(2-x)^{3}=0\Rightarrow 2-x=0\Rightarrow x=2$ Και μετά έγραφε ότι $108(2-x)+(x+2)^{3}=0$ αλλά δεν βρήκε τις άλλες ρίζες πόσο πιστεύετε ότι θα του έκοβαν; Δεν γνωρίζουμε. Φιλικά, Αχιλλέας Εσ...
από petrosqw
Σάβ Νοέμ 09, 2019 3:45 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: ΘΑΛΗΣ 2019-2020
Απαντήσεις: 45
Προβολές: 4469

Re: ΘΑΛΗΣ 2019-2020

Στο θέμα 1 της Γ'Λυκείου αν κάποιος έφτανε στην σχέση:
(2-x)^{3}(108(2-x)+(x+2)^{3})=0

Και από εκει έβρισκε:(2-x)^{3}=0\Rightarrow 2-x=0\Rightarrow x=2

Και μετά έγραφε ότι 108(2-x)+(x+2)^{3}=0
αλλά δεν βρήκε τις άλλες ρίζες πόσο πιστεύετε ότι θα του έκοβαν;
από petrosqw
Τρί Οκτ 22, 2019 9:18 pm
Δ. Συζήτηση: Διαγωνισμοί για φοιτητές
Θέμα: IMC 2019/1/3
Απαντήσεις: 6
Προβολές: 553

Re: IMC 2019/1/3

Έστω μια δυο φορές παραγωγίσιμη συνάρτηση $f:(-1,1) \to \mathbb{R}$ ώστε $\displaystyle 2f'(x) + xf''(x) \geqslant 1$ για κάθε $x \in (-1,1)$. Να αποδειχθεί ότι $\displaystyle \int_{-1}^1 xf(x) \, \mathrm{d}x \geqslant \frac{1}{3}.$ Έχω μια απορία: Η f δεν θα έπρεπε να είναι ορισμένη σε κλειστό διά...
από petrosqw
Τρί Οκτ 22, 2019 6:22 pm
Δ. Συζήτηση: Διαγωνισμοί για φοιτητές
Θέμα: IMC 2019/1/3
Απαντήσεις: 6
Προβολές: 553

Re: IMC 2019/1/3

Έστω μια δυο φορές παραγωγίσιμη συνάρτηση $f:(-1,1) \to \mathbb{R}$ ώστε $\displaystyle 2f'(x) + xf''(x) \geqslant 1$ για κάθε $x \in (-1,1)$. Να αποδειχθεί ότι $\displaystyle \int_{-1}^1 xf(x) \, \mathrm{d}x \geqslant \frac{1}{3}.$ Έχω μια απορία: Η f δεν θα έπρεπε να είναι ορισμένη σε κλειστό διά...
από petrosqw
Σάβ Οκτ 19, 2019 6:34 pm
Δ. Συζήτηση: Γενικά - Επίπεδο Θαλή/Ευκλείδη (Juniors)
Θέμα: Θαλής/Ευκλείδης/Αρχιμήδης
Απαντήσεις: 1
Προβολές: 225

Θαλής/Ευκλείδης/Αρχιμήδης

Καλησπέρα, Θα ήθελα την άποψη σας για ένα θέμα που με απασχολεί για αρκετό καιρό.Γίνεται κάποιος μαθητής/μαθήτρια (που έχει κλίση στα μαθηματικά)Γ'Λυκείου που συμμετέχει για πρώτη φορά σε μαθηματικούς διαγωνισμούς (έχοντας προετοιμαστεί κατάλληλα) να φτάσει ,ακόμα και να διακριθεί, στον Αρχιμήδη; Αν...
από petrosqw
Τρί Αύγ 27, 2019 8:01 pm
Δ. Συζήτηση: Γενικά Μηνύματα
Θέμα: Παγκόσμιο ρεκόρ Μαθηματικών
Απαντήσεις: 57
Προβολές: 7524

Re: Παγκόσμιο ρεκόρ Μαθηματικών

Άνευ σχολίων Σάμος: 7501 Θεσσαλονίκη: 14019 Αθήνα: 14617 Καστοριά: 9206 Λαμία: 9433 Ιωάννινα: 10936 Ηράκλειο: 9285 Πάτρα: 11395 Και για να συμπληρώσω την ΘΛΙΒΕΡΗ εικόνα, στο Εφαρμοσμένων Μαθηματικών Κρήτης η βάση είναι 7478 (ίσον, κάτω από τη Σάμο). Άκουσα στις ειδήσεις στην τηλεόραση ότι φοιτητής ...
από petrosqw
Δευ Αύγ 26, 2019 6:20 pm
Δ. Συζήτηση: Θεωρία Αριθμών - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Διαιρετότητα
Απαντήσεις: 5
Προβολές: 489

Re: Διαιρετότητα

Βρείτε όλους τους μη αρνητικούς ακεραίους $m$ ώστε $(2^{2m+1})^{2}+1$ να διαιρείται με δυο το πολύ διαφορετικούς μεταξύ τους πρώτους Λέγοντας με 2 το πολύ διαφορετικούς πρώτους εννοούμε και τις δυνάμεις αυτών; Για παράδειγμα: για $m=2$ έχουμε $(2^{2m+1})^2+1=5^2\cdot41$ που αυτός διαιρείται με δύο ...
από petrosqw
Δευ Αύγ 26, 2019 4:20 pm
Δ. Συζήτηση: Θεωρία Αριθμών - Επίπεδο Αρχιμήδη (Seniors)
Θέμα: Διαιρετότητα
Απαντήσεις: 5
Προβολές: 489

Διαιρετότητα

Βρείτε όλους τους μη αρνητικούς ακεραίους m
ώστε (2^{2m+1})^{2}+1 να διαιρείται με δυο το πολύ διαφορετικούς μεταξύ τους πρώτους
από petrosqw
Σάβ Ιουν 29, 2019 4:22 pm
Δ. Συζήτηση: Εξετάσεις Προτύπων και Πειραματικών Σχολείων
Θέμα: Εξετάσεις πρότυπα γυμνάσια 2019
Απαντήσεις: 44
Προβολές: 3517

Re: Εξετάσεις πρότυπα γυμνάσια 2019

Αυτο είναι πολύ άδικο...Κρίμα για αυτά τα 5 παιδιά που προσπάθησαν και κατάφεραν με την αξία τους να διεκδικήσουν μια θέση.Και τι τωρα;Θα διώξουν τυχαία 5 παιδιά από τα 101 που πέρασαν μόνο και μόνο επειδή είναι ανίκανοι να χωρίσουν τους μαθητές σε 3 τάξεις των 25 και μια των 26;Τι να πω!Οσο παμε κα...
από petrosqw
Τετ Ιουν 26, 2019 12:28 am
Δ. Συζήτηση: Διαγωνισμοί για φοιτητές
Θέμα: Προετοιμασία για seemous
Απαντήσεις: 4
Προβολές: 571

Re: Προετοιμασία για seemous

Βάζω και άλλη μια άσκηση Έστω $p$ ένας πρωτος αριθμός και $a$, $b$ φυσικοί με $a>b$ Έστω ακόμη ότι $a=a_{0}+a_{1}p+a_{2}p^{2}+...+a_{r}p^{r}$ και $b=b_{0}+b_{1}p+b_{2}p^{2}+...+b_{s}p^{s}$,όπου $0\leq a_{i },b_{i }<p$.Να δείξετε ότι: I)$\binom{a}{b}\equiv \prod_{i=0}^{r}\binom{a_{i }}{b_{i }} mod p$...
από petrosqw
Τρί Ιουν 25, 2019 6:38 pm
Δ. Συζήτηση: Διαγωνισμοί για φοιτητές
Θέμα: Προετοιμασία για seemous
Απαντήσεις: 4
Προβολές: 571

Προετοιμασία για seemous

Να υπολογίσετε το όριο \lim_{n\rightarrow \propto }\frac{1}{n^{4}}\left ( \prod_{k=1}^{2n}(n^{2}+k^{2}) \right )^{\frac{1}{n} }
από petrosqw
Τετ Ιουν 05, 2019 5:22 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Αρχιμήδης 2017
Απαντήσεις: 78
Προβολές: 11586

Re: Αρχιμήδης 2017

:first: :winner_first_h4h: :first:
Χριστινα απλά RESPECT!!!!!!
από petrosqw
Τρί Ιουν 04, 2019 1:35 pm
Δ. Συζήτηση: Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)
Θέμα: Αρχιμήδης 2017
Απαντήσεις: 78
Προβολές: 11586

Re: Αρχιμήδης 2017

Καποια άλλη λυση για το πρόβλημα 4;
από petrosqw
Κυρ Ιουν 02, 2019 8:55 pm
Δ. Συζήτηση: Άλγεβρα - Προχωρημένο Επίπεδο (Seniors)
Θέμα: Αρχιμηδης 2017
Απαντήσεις: 4
Προβολές: 485

Re: Αρχιμηδης 2017

Χριστός Ανέστη Μία λύση είναι η επίσημη (και εγώ έτσι την έλυσα), που βρίσκεται στο παρακάτω link: http://www.hms.gr/sites/default/files/subsites/competitions/2016/Arximides%202017_Ekfoniseissolutions_final.pdf Πρόκειται για το τέταρτο θέμα των μεγάλων. Εγω ανέβασα την άσκηση για να δω μια λυση δια...

Επιστροφή στην ειδική αναζήτηση