Η αναζήτηση βρήκε 1348 εγγραφές

από BAGGP93
Παρ Οκτ 14, 2011 1:34 pm
Δ. Συζήτηση: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ'
Θέμα: Καλή τύχη
Απαντήσεις: 4
Προβολές: 908

Re: Καλή τύχη

Έστω ότι πρέπει να την αυξήσουμε κατάk.έστω \bar{y} η νέα μέση τιμή και \bar{x} η προηγούμενη.θέλουμε να ισχύει \bar{y}=\bar{x}+1 {t_1+t_2+...t_v\over v}+{k\over v}={t_1+t_2+...+t_v\over v}+1\Rightarrow{k\over v}=1\Rightarrow k=v
από BAGGP93
Παρ Οκτ 14, 2011 12:47 pm
Δ. Συζήτηση: ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Γ'
Θέμα: μια δική μου
Απαντήσεις: 4
Προβολές: 414

Re: μια δική μου

Γιώργο είναι f(\alpha )=2 και όχι 3
από BAGGP93
Πέμ Οκτ 13, 2011 1:14 pm
Δ. Συζήτηση: ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Γ'
Θέμα: μια δική μου
Απαντήσεις: 4
Προβολές: 414

μια δική μου

Έστω η παραγωγίσιμη συνάρτηση $f;\left[0,+\infty\right)\rightarrow R$ και οι θετικοί αριθμοί $\alpha ,\beta$ με $\alpha >\beta$ τέτοιοι ώστε $f(\alpha)=2$ και $f(\beta )=3$ .Ισχύει ότι $xf^2(x)+2xf(x)=-\sin x$ για κάθε $x\in\left(0,+\infty\right)$. $i)$Να δείξετε ότι υπάρχει ένα τουλάχιστον $x_1>0$ ...
από BAGGP93
Πέμ Οκτ 13, 2011 12:02 pm
Δ. Συζήτηση: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ'
Θέμα: Καλή τύχη
Απαντήσεις: 4
Προβολές: 908

Re: Καλή τύχη

Απλά φίλε μου δεν έχω μάθει να χειρίζομαι σωστά την LATEX και για αυτό το λόγο έγραψα μόνο το αποτέλεσμα.θα γράψω και την λύση που προτείνω.
από BAGGP93
Δευ Οκτ 10, 2011 3:11 pm
Δ. Συζήτηση: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ'
Θέμα: Καλή τύχη
Απαντήσεις: 4
Προβολές: 908

Re: Καλή τύχη

Πρέπει να την αυξήσουμε κατά \nu.
από BAGGP93
Σάβ Αύγ 20, 2011 4:22 pm
Δ. Συζήτηση: ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Γ'
Θέμα: Επαναληπτική (Ανάλυση)
Απαντήσεις: 3
Προβολές: 1131

Re: Επαναληπτική (Ανάλυση)

Που μπορώ να ελέγξω τα δύο τελευταία ερωτήματα αν τα έχω σωστά
από BAGGP93
Πέμ Αύγ 18, 2011 12:26 pm
Δ. Συζήτηση: ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ Γ'
Θέμα: Επαναληπτική με μιγάδες+++
Απαντήσεις: 5
Προβολές: 1374

Re: Επαναληπτική με μιγάδες+++

Δείχνοντας ότι η δεύτερη παράγωγος διατηρεί σταθερό πρόσημο στο σύνολο των πραγματικών αριθμών συμπεραίνουμε ότι η πρώτη παράγωγος είναι γνησίως μονότονη άρα έχει το πολύ μια ρίζα.θέλω να πω ότι το Θ.Μ.Τ στο διάστημα [1,2] δεν είναι απαραίτητο να γίνει.

Επιστροφή στην ειδική αναζήτηση