Πολύχρωμο πασχαλινό αυγό

Συντονιστές: cretanman, ΔΗΜΗΤΡΗΣ ΙΩΑΝΝΟΥ, socrates

Άβαταρ μέλους
Al.Koutsouridis
Δημοσιεύσεις: 1261
Εγγραφή: Πέμ Ιαν 30, 2014 11:58 pm
Τοποθεσία: Αθήνα

Πολύχρωμο πασχαλινό αυγό

#1

Μη αναγνωσμένη δημοσίευση από Al.Koutsouridis » Κυρ Απρ 01, 2018 8:24 pm

Η Αναστασία έβαψε ένα σφαιροειδές αυγό χρησιμοποιώντας πέντε χρώματα, βουτώντας το με την σειρά σε ένα ποτήρι με την κάθε βαφή, ώστε να βαφτεί ακριβώς το μισό της επιφάνειάς του (ημισφαίριο) κάθε φορά. Ως αποτέλεσμα το αυγό βάφτηκε πλήρως. Να αποδείξετε, ότι μια από τις βαφές ήταν περιττή, δηλαδή εάν η Αναστασία δεν χρησιμοποιούσε αυτή την βαφή και στις υπόλοιπες το βουτούσε όπως και πριν, τότε αυτό ούτως ή άλλως θα βαφόταν πλήρως.


Υγ. Το πρόβλημα είναι το 5ο της δεύτερης μέρας για την 11η τάξη από την φετινή ολυμπιάδα της Μόσχας. Κάποια άλλη στιγμή θα προσπαθήσω να ανεβάσω και τα υπόλοιπα.



Λέξεις Κλειδιά:
Άβαταρ μέλους
Ανδρέας Πούλος
Δημοσιεύσεις: 1424
Εγγραφή: Κυρ Μαρ 01, 2009 10:47 pm
Τοποθεσία: ΘΕΣΣΑΛΟΝΙΚΗ
Επικοινωνία:

Re: Πολύχρωμο πασχαλινό αυγό

#2

Μη αναγνωσμένη δημοσίευση από Ανδρέας Πούλος » Πέμ Απρ 05, 2018 1:27 am

Χωρίζουμε τη σφαίρα σε τέσσερα ίσα μέρη τα οποία ορίζονται από δύο μέγιστους κύκλους
που τα επίπεδά τους είναι κάθετα μεταξύ τους. Τα μέρη αυτά τα ονομάζουμε 1, 2, 3, 4 αντίστοιχα
όπως φαίνεται στο συνημμένο σχήμα.
Σε κάθε βούτηγμα του σφαιρικού αυγού σε κάποιο χρώμα για να καλυφθεί η μισή του επιφάνεια
έχουμε τέσσερεις δυνατές περιπτώσεις τις (1, 2) (1,4) (2, 3) (3,4).
Φυσικά, μπορούμε και με δύο φορές να βάψουμε το αυγό π.χ. (1,2) και (3,4).
Στη χειρότερη περίπτωση απαιτούνται 4 βαφές δηλαδή οι παραπάνω περιπτώσεις.
Άρα, μια πέμπτη βαφή είναι περιττή.
σφαίρα.png
σφαίρα.png (6.06 KiB) Προβλήθηκε 1245 φορές


Άβαταρ μέλους
Al.Koutsouridis
Δημοσιεύσεις: 1261
Εγγραφή: Πέμ Ιαν 30, 2014 11:58 pm
Τοποθεσία: Αθήνα

Re: Πολύχρωμο πασχαλινό αυγό

#3

Μη αναγνωσμένη δημοσίευση από Al.Koutsouridis » Πέμ Απρ 05, 2018 2:56 am

Ανδρέας Πούλος έγραψε:
Πέμ Απρ 05, 2018 1:27 am
Χωρίζουμε τη σφαίρα σε τέσσερα ίσα μέρη τα οποία ορίζονται από δύο μέγιστους κύκλους
που τα επίπεδά τους είναι κάθετα μεταξύ τους. Τα μέρη αυτά τα ονομάζουμε 1, 2, 3, 4 αντίστοιχα
όπως φαίνεται στο συνημμένο σχήμα.
Σε κάθε βούτηγμα του σφαιρικού αυγού σε κάποιο χρώμα για να καλυφθεί η μισή του επιφάνεια
έχουμε τέσσερεις δυνατές περιπτώσεις τις (1, 2) (1,4) (2, 3) (3,4).
Φυσικά, μπορούμε και με δύο φορές να βάψουμε το αυγό π.χ. (1,2) και (3,4).
Στη χειρότερη περίπτωση απαιτούνται 4 βαφές δηλαδή οι παραπάνω περιπτώσεις.
Άρα, μια πέμπτη βαφή είναι περιττή.
σφαίρα.png
Καλησπέρα κ.Ανδρέα,

Στην παραπάνω θεωρήση νομίζω υποθέτετε ότι το αυγό το περίστρέφουμε κατα 90 μοίρες γύρο από τους μεγιστους κύκλους που αναφέρετε και μετά το βουτάμε. Κάτι τέτοιο όμως δεν προκύπτει από την εκφώνηση.


Άβαταρ μέλους
Al.Koutsouridis
Δημοσιεύσεις: 1261
Εγγραφή: Πέμ Ιαν 30, 2014 11:58 pm
Τοποθεσία: Αθήνα

Re: Πολύχρωμο πασχαλινό αυγό

#4

Μη αναγνωσμένη δημοσίευση από Al.Koutsouridis » Κυρ Απρ 19, 2020 3:59 pm

Χριστός Ανέστη!

Επαναφορά για το πασχαλινό τραπέζι :D .


Άβαταρ μέλους
rek2
Επιμελητής
Δημοσιεύσεις: 1917
Εγγραφή: Κυρ Δεκ 21, 2008 12:13 am

Re: Πολύχρωμο πασχαλινό αυγό

#5

Μη αναγνωσμένη δημοσίευση από rek2 » Κυρ Απρ 19, 2020 6:23 pm

Al.Koutsouridis έγραψε:
Κυρ Απρ 19, 2020 3:59 pm
Χριστός Ανέστη!

Επαναφορά για το πασχαλινό τραπέζι :D .
Χρόνια Πολλά! Χριστός ανέστη!!


Δεν αρκούν δύο χρώματα; Δύο ημισφαίρια , δύο χρώματα...


Mihalis_Lambrou
Επιμελητής
Δημοσιεύσεις: 12674
Εγγραφή: Κυρ Δεκ 21, 2008 2:04 am

Re: Πολύχρωμο πασχαλινό αυγό

#6

Μη αναγνωσμένη δημοσίευση από Mihalis_Lambrou » Κυρ Απρ 19, 2020 8:31 pm

rek2 έγραψε:
Κυρ Απρ 19, 2020 6:23 pm
Δεν αρκούν δύο χρώματα; Δύο ημισφαίρια , δύο χρώματα...
Κώστα και Ανδρέα, ίσως δεν είναι σαφές από την εκφώνηση αλλά αυτό που λέει ή άσκηση είναι το εξής:

Η Αναστασία έβαψε την σφαίρα με πέντε χρώματα, με τον τρόπο που περιγράφει η άσκηση. Η φίλη της η μάγισσα έχει ένα τρόπο να αφαιρεί ένα από τα χρώματα, χωρίς να βλάψει τα υπόλοιπα. Δείξτε ότι η μάγισσα μπορεί να επιλέξει ένα από τα χρώματα το οποίο θα αφαιρέσει, αλλά η σφαίρα θα παραμείνει εξ ολοκλήρου βαμμένη.


Άβαταρ μέλους
Al.Koutsouridis
Δημοσιεύσεις: 1261
Εγγραφή: Πέμ Ιαν 30, 2014 11:58 pm
Τοποθεσία: Αθήνα

Re: Πολύχρωμο πασχαλινό αυγό

#7

Μη αναγνωσμένη δημοσίευση από Al.Koutsouridis » Κυρ Απρ 19, 2020 8:57 pm

rek2 έγραψε:
Κυρ Απρ 19, 2020 6:23 pm

Χρόνια Πολλά! Χριστός ανέστη!!

Δεν αρκούν δύο χρώματα; Δύο ημισφαίρια , δύο χρώματα...
Αληθώς Ανέστη!

Αν το ερώτημα ήταν, πόσα είναι τα ελάχιστα δυνατά βουτήματα, τότε ναι, αν βουτούσαμε το ένα ημισφαίριο (νότιο) και μετά το άλλο (βόρειο) θα βαφόταν το αυγό πλήρως. Όμως το πρόβλημα δεν ζητάει αυτό.

Ας φανταστούμε ότι αρχικά βάφουμε το ημισφαίριο από το μεσημβρινό 0 μέχρι τον 180, ύστερα το ημισφαίριο από τον μεσημβρινό 1 έως 181, ύστερα από 2 έως 182, την τέταρτη φορά από το 3 έως 183 και τέλος την πέμτη φορά από τον μεσημβρινό 183 έως 3. Το αυγό έχει βαφτεί πλήρως με αυτήν την διαδικασία.

Αυτό που ισχυρίζεται το πρόβλημα είναι, ότι μια από αυτές τις βαφές ήταν περιττή. Πράματι αν δεν κάναμε την δεύτερη βαφή από τον μεσημβρινό 1 έως 181, το αβγό θα βαφόταν πλήρως και από τα υπόλοιπα βουτήματα.

Το παραπάνω ήταν μια ειδική περίπτωση, βάψαμε κατά την "φορά" των μεσημβρινών και με συγκεκριμένα "βήματα". Ισχυριζόμαστε, ότι όπως και να γίνουν οι βαφές, οποιαδήποτε ημισφαίρια και αν βουτάμε, μία τουλάχιστον θα είναι περιττή.

Edit: Τώρα πρόσεξα ότι απάντησε και ο κ.Λάμπρου.


Άβαταρ μέλους
Demetres
Γενικός Συντονιστής
Δημοσιεύσεις: 8549
Εγγραφή: Δευ Ιαν 19, 2009 5:16 pm
Τοποθεσία: Λεμεσός/Πύλα
Επικοινωνία:

Re: Πολύχρωμο πασχαλινό αυγό

#8

Μη αναγνωσμένη δημοσίευση από Demetres » Δευ Απρ 20, 2020 1:38 pm

Θεωρούμε ότι οι βαφές μας μπαίνουν και μέσα στο αυγό.

Για το χρώμα k έστω A_k το κομμάτι του αυγού που δεν πήρε το χρώμα k. Αν δεν ισχύει το ζητούμενο, δηλαδή αν η τομή κάθε τεσσάρων από τα A_k είναι μη κενή, τότε από το θεώρημα Helly η τομή και των πέντε A_k είναι μη κενή, δηλαδή δεν είχαμε χρωματίσει όλα το αυγό στην αρχή, άτοπο.

Δεν γνωρίζω αν θα έπρεπε να επικαλεστούμε το θεώρημα ή να το αποδείξουμε σε αυτήν την ειδική περίπτωση.


KDORTSI
Διακεκριμένο Μέλος
Δημοσιεύσεις: 2000
Εγγραφή: Τετ Μαρ 11, 2009 9:26 pm

Re: Πολύχρωμο πασχαλινό αυγό

#9

Μη αναγνωσμένη δημοσίευση από KDORTSI » Δευ Απρ 20, 2020 2:23 pm

Καλημέρα, Καλό Πάσχα και Χρόνια Πολλά!!

Πασχαλιά 2020.png
Πασχαλιά 2020.png (72.46 KiB) Προβλήθηκε 690 φορές
Μικρό σχόλιο:
Το ανωτέρω σχήμα δεν είναι τυχαία φωτογραφία.
Είναι ένας κύλινδρος, δύο ελλειψοειδή, μια έλικα και
μερικές καμπύλες επί της επιφάνειας του ενός ελλειψοειδούς!

Αν θέλετε να δείτε την πασχαλιάτικη λαμπάδα να "καίει" τότε
επισκεφθείτε το συνημμένο αρχείο.
Πασχαλιάτικη λαμπάδα 1.ggb
(13.64 KiB) Μεταφορτώθηκε 13 φορές
ΥΓ. Η σχέση του μηνύματός μου είναι καθαρά για τις πασχαλιάτικες ευχές!!

Κώστας Δόρτσιος


Άβαταρ μέλους
Al.Koutsouridis
Δημοσιεύσεις: 1261
Εγγραφή: Πέμ Ιαν 30, 2014 11:58 pm
Τοποθεσία: Αθήνα

Re: Πολύχρωμο πασχαλινό αυγό

#10

Μη αναγνωσμένη δημοσίευση από Al.Koutsouridis » Δευ Απρ 20, 2020 3:40 pm

Demetres έγραψε:
Δευ Απρ 20, 2020 1:38 pm
Θεωρούμε ότι οι βαφές μας μπαίνουν και μέσα στο αυγό.

Για το χρώμα k έστω A_k το κομμάτι του αυγού που δεν πήρε το χρώμα k. Αν δεν ισχύει το ζητούμενο, δηλαδή αν η τομή κάθε τεσσάρων από τα A_k είναι μη κενή, τότε από το θεώρημα Helly η τομή και των πέντε A_k είναι μη κενή, δηλαδή δεν είχαμε χρωματίσει όλα το αυγό στην αρχή, άτοπο.

Δεν γνωρίζω αν θα έπρεπε να επικαλεστούμε το θεώρημα ή να το αποδείξουμε σε αυτήν την ειδική περίπτωση.
:coolspeak: Ωραία η αναγωγή στο θεώρημα Helly, θεωρώντας τα μη βαμμένα ημισφαίρια. Για την χρήση του θεωρήματος χωρίς απόδειξη, σε αυτή την ειδική περίπτωση, δε ξέρω. Εικάζω πρέπει να αποδειχτεί. Αν και το θεώρημα Helly, τουλάχιστον στην δισδιάστατη εκδοχή του, είναι ένα αρκετά δημοφιλές θέμα στους μαθηματικούς ομίλους. Να σημειώσουμε ότι οι επίσημες λύσεις πρέπει να είναι πάντα "σχολικές", αν εξαιρέσει κανείς θέματα όπως μαθηματική επαγωγή.

Έχω δει σε άλλα προβλήματα να αναφέρεται ρητά, ότι δεν μπορεί να χρησιμοποιηθεί ένα θεώρημα χωρίς απόδειξη. Για παράδειγμα στο πρόβλημα 8, 10/11ης τάξης της ολυμπιάδας του λυκείου 237 για το 2018, η εκφώνηση ήταν διατυπωμένη ως εξής:

"Ο γράφος G με την αφαίρεση οποιασδήποτε κορυφής του γίνεται επίπεδος. Να αποδείξεται ότι οι κορυφές του δέχονται 5- χρωματισμό. (Χρήση του θεωρήματος των τεσσάρων χρωμάτων χωρίς απόδειξη δεν επιτρέπεται!)"

Βέβαια ρητή αναφορά στη μη χρήση του θεωρήματος Helly έδώ, θα ήταν περισσότερο υπόδειξη.


Απάντηση

Επιστροφή σε “Θέματα διαγωνισμών (ΕΜΕ, BMO, JBMO, IMO, Kangaroo κλπ)”

Μέλη σε σύνδεση

Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 3 επισκέπτες