IMC 2018/1/2
Συντονιστής: Demetres
- Demetres
- Γενικός Συντονιστής
- Δημοσιεύσεις: 8587
- Εγγραφή: Δευ Ιαν 19, 2009 5:16 pm
- Τοποθεσία: Λεμεσός/Πύλα
- Επικοινωνία:
IMC 2018/1/2
Υπάρχει σώμα του οποίου η πολλαπλασιαστική ομάδα να είναι ισόμορφη με την προσθετική του;
Λέξεις Κλειδιά:
Re: IMC 2018/1/2
Θα γράψω τη σκέψη που κρύβεται πίσω από τη λύση πρώτα: Προφανώς το σώμα θα είναι άπειρο διότι διαφορετικά οι 2 ομάδες δεν είναι ισοπληθικές, άρα ούτε ισόμορφες. Κοιτάμε τώρα να δούμε τι γίνεται σε ένα κλασικό παράδειγμα άπειρου σώματος, που είναι το





Πάμε τώρα στη λύση: Αν

















Κολλιοπουλος Νικος.
Μεταδιδακτορικός ερευνητής.
Ερευνητικά ενδιαφέροντα: Στοχαστικές ΜΔΕ, ασυμπτωτική ανάλυση στοχαστικών συστημάτων, εφαρμογές αυτών στα χρηματοοικονομικά και στη διαχείριση ρίσκων.
Μεταδιδακτορικός ερευνητής.
Ερευνητικά ενδιαφέροντα: Στοχαστικές ΜΔΕ, ασυμπτωτική ανάλυση στοχαστικών συστημάτων, εφαρμογές αυτών στα χρηματοοικονομικά και στη διαχείριση ρίσκων.
- Demetres
- Γενικός Συντονιστής
- Δημοσιεύσεις: 8587
- Εγγραφή: Δευ Ιαν 19, 2009 5:16 pm
- Τοποθεσία: Λεμεσός/Πύλα
- Επικοινωνία:
Re: IMC 2018/1/2
Ήμουν σίγουρος ότι την είχα δει ξανά στο βιβλίο του Halmos "Linear Algebra Problem Book". Το μετροφύλλισα χθες χωρίς να βρω κάτι.
Σήμερα θυμήθηκα. Ήταν σε βιβλίο του Halmos αλλά όχι στο πιο πάνω. Είναι η άσκηση 10Β3 στο βιβλίο "Problems for Mathematicians, Young and Old".
Αντιγράφω την λύση μιας και είναι λίγο διαφορετική από του Νίκου:
Προφανώς το σώμα δεν μπορεί να είναι πεπερασμένο οπότε ας υποθέσουμε ότι είναι άπειρο.
Αν υπάρχει ισομορφισμός, τότε υπάρχει 1 προς 1 αντιστοιχία μεταξύ των στοιχείων με τάξη
προσθετικά και αυτών με τάξη
πολλαπλασιαστικά.
Οι λύσεις της
είναι είτε
είτε
αναλόγως αν το σώμα έχει τάξη
ή όχι.
Οι λύσεις της
είναι είτε άπειρες είτε
αναλόγως αν το σώμα έχει τάξη
ή όχι.
Οπότε δεν υπάρχει ισομορφισμός.
Σήμερα θυμήθηκα. Ήταν σε βιβλίο του Halmos αλλά όχι στο πιο πάνω. Είναι η άσκηση 10Β3 στο βιβλίο "Problems for Mathematicians, Young and Old".
Αντιγράφω την λύση μιας και είναι λίγο διαφορετική από του Νίκου:
Προφανώς το σώμα δεν μπορεί να είναι πεπερασμένο οπότε ας υποθέσουμε ότι είναι άπειρο.
Αν υπάρχει ισομορφισμός, τότε υπάρχει 1 προς 1 αντιστοιχία μεταξύ των στοιχείων με τάξη


Οι λύσεις της




Οι λύσεις της



Οπότε δεν υπάρχει ισομορφισμός.
Μέλη σε σύνδεση
Μέλη σε αυτήν τη Δ. Συζήτηση: Δεν υπάρχουν εγγεγραμμένα μέλη και 1 επισκέπτης